

Row column designs

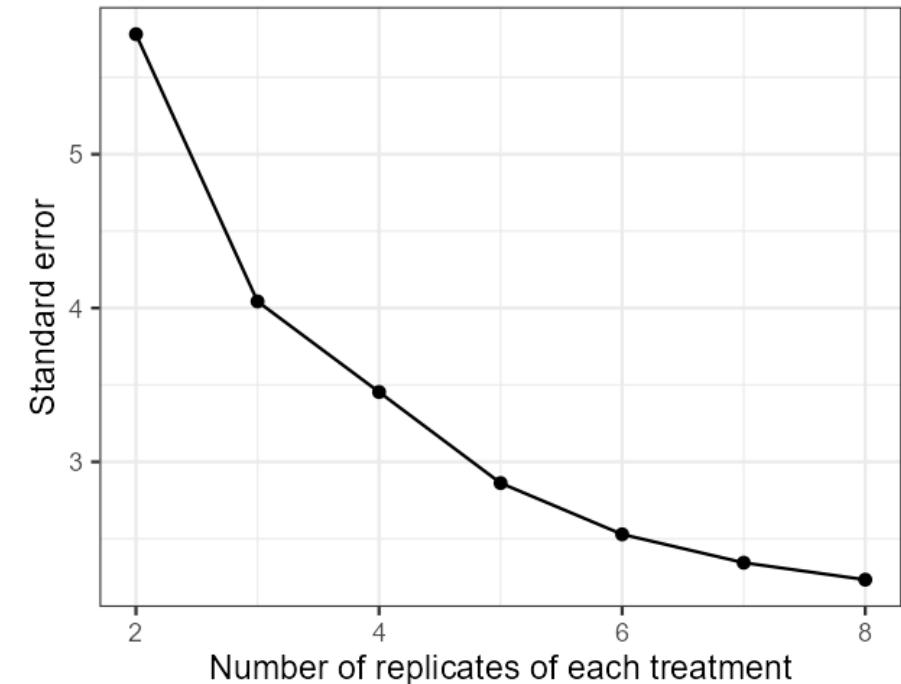
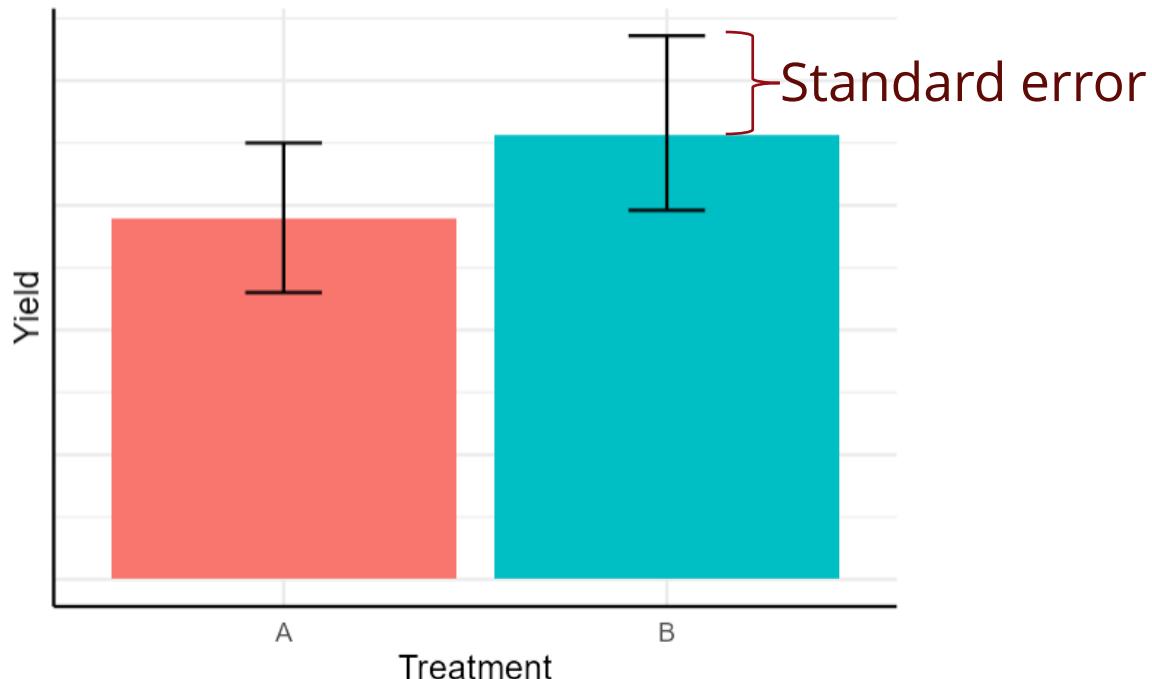
1	7	3	6
6	5	4	8
3	8	5	1
5	4	2	7
8	2	7	3
7	1	8	4
2	6	1	5
4	3	6	2

About me and this talk

- Statistician at Danish Technological Institute working with the design and analysis of field trials, climate scenarios, etc.
- Writing statistical R-package for the new Nordic Field Trial System (NFTS)
 - This system includes row-column type designs: row column design and t-latinized alpha design.

How much you like row-column designs

Before this talk



After this talk

Agenda

- Motivation for row-column designs
- When to use the designs

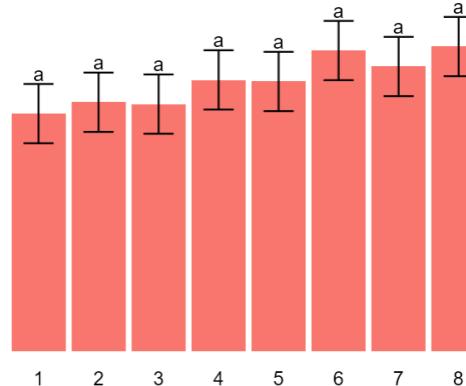
What is a good design?

- Not too expensive to conduct in real life
- Induces small standard errors to detect treatment differences

Importance of design for standard error

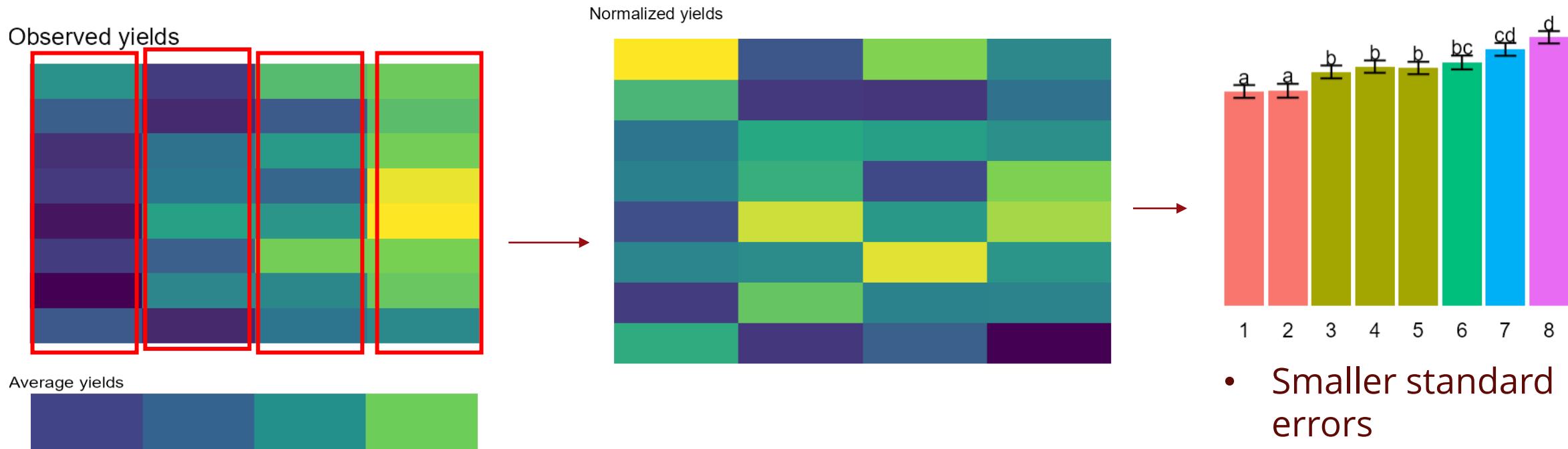
- Consider the situation where there is a soil gradient, but our design is only randomized

Soil gradient


Randomized design

8	1	7	5
7	2	2	6
4	3	4	6
3	4	2	7
3	8	5	8
5	5	8	6
1	6	3	4
7	1	2	1

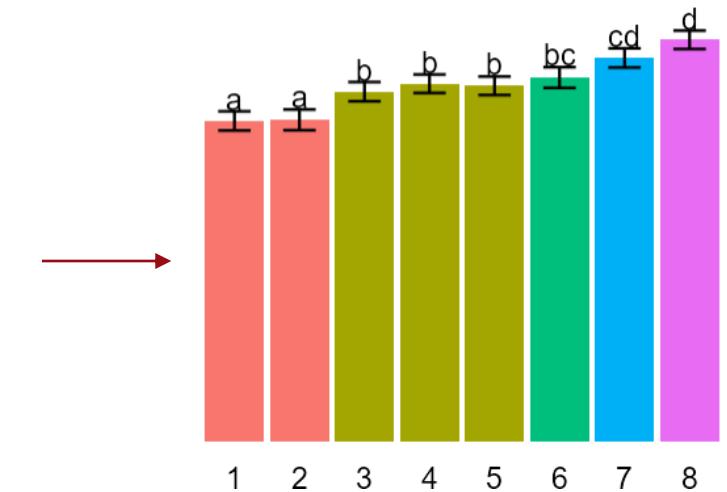
Observed yields


Estimation of effects

- High standard errors
- No significant differences between treatments

Blocking

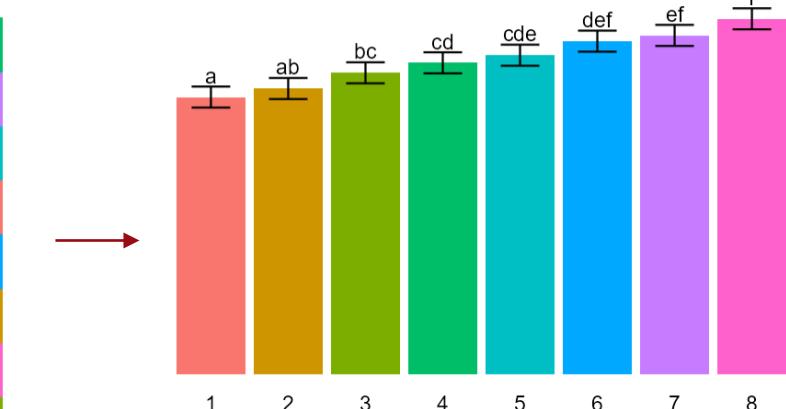
- A good trick is to designate blocks and compute how much yield deviates from the block average.


- Smaller standard errors
- More significant treatment differences

Blocking, trick 2

- Mathematically, it is not optimal to randomize every single treatment if we are going to use the blocks to analyze the data

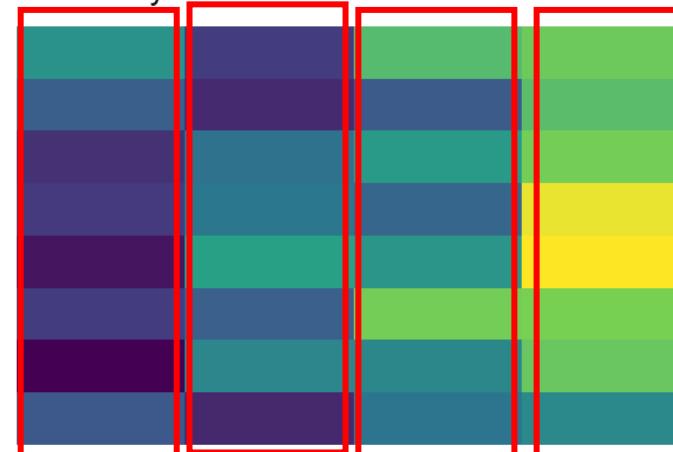
Randomized design


8	1	7	5
7	2	2	6
4	3	4	6
3	4	2	7
3	8	5	8
5	5	8	6
1	6	3	4
7	1	2	1

- It is optimal to put an equal number of each treatment in each block

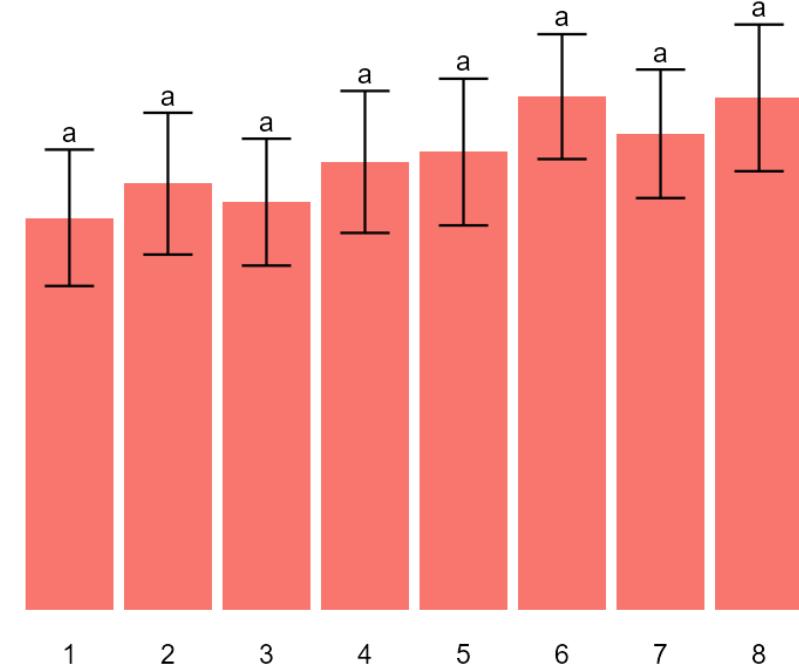
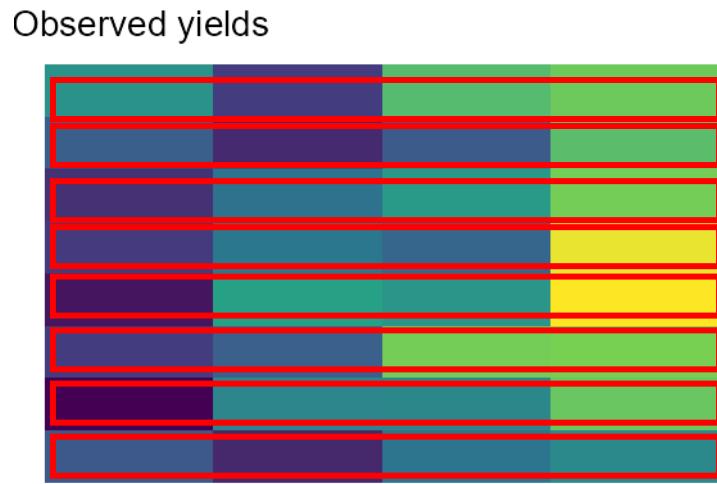
Block design

2	7	6	4
3	4	5	7
6	6	8	5
8	5	1	1
1	2	3	6
7	3	4	2
4	8	7	8
5	1	2	3

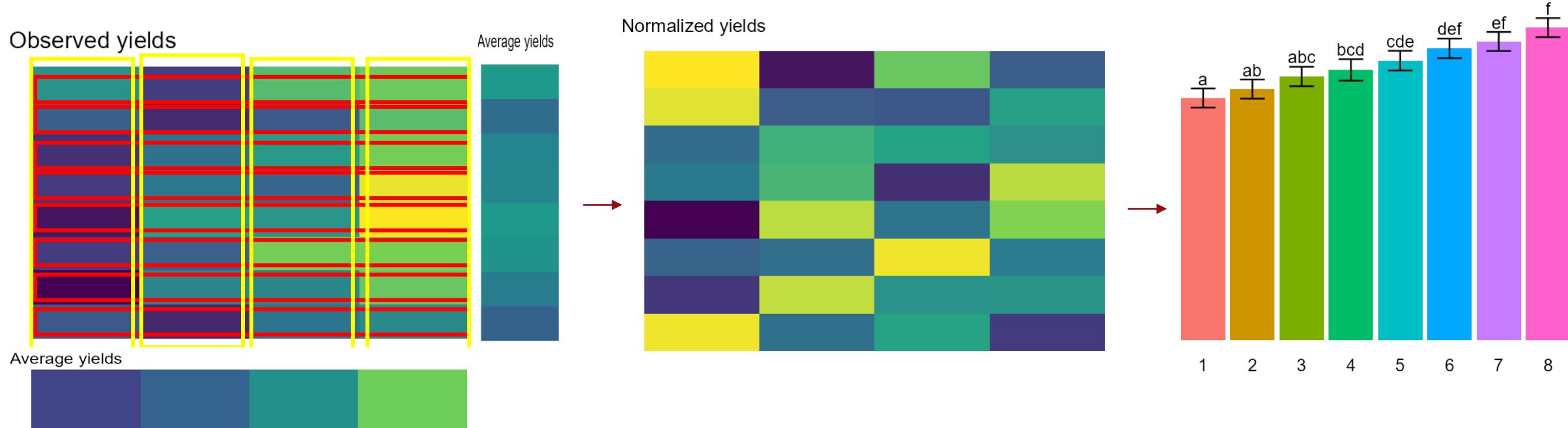

Block design

- To make a block design:
 - Treatments are distributed equally among the block
 - The yields are normalized within each block.
- It works best if the blocks reflect (all) the soil variation and it can be hard to know beforehand

Block design



2	7	6	4
3	4	5	7
6	6	8	5
8	5	1	1
1	2	3	6
7	3	4	2
4	8	7	8
5	1	2	3

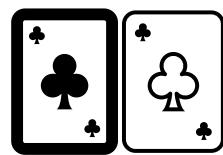
Observed yields


If the blocks don't follow the soil gradient

- If the blocking that we chose did not follow the soil gradient, we would have had much higher standard errors

Solution: row-column designs

- In a row-column design, we put the blocks in both directions making it unnecessary to know the gradient beforehand

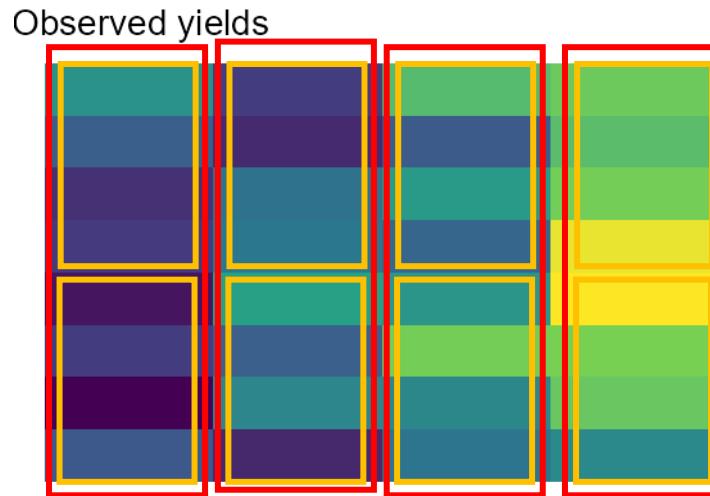


Generating an optimal row-column

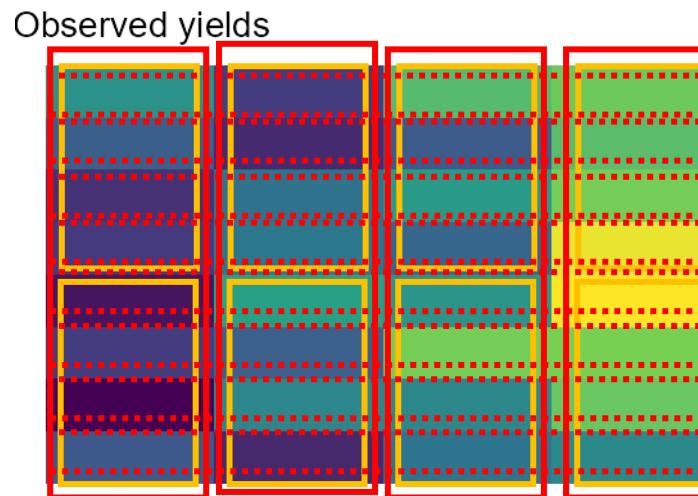
- We generate optimal row-column design by distributing treatments equally between rows and columns (aiming for D-optimality).
 - Needs a computer to be generated

Block design

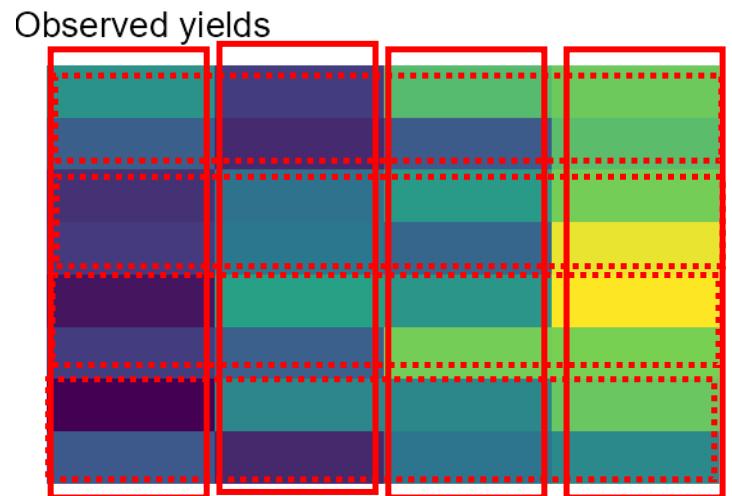
2	7	6	4
3	4	5	7
6	6	8	5
8	5	1	1
1	2	3	6
7	3	4	2
4	8	7	8
5	1	2	3


Row column design

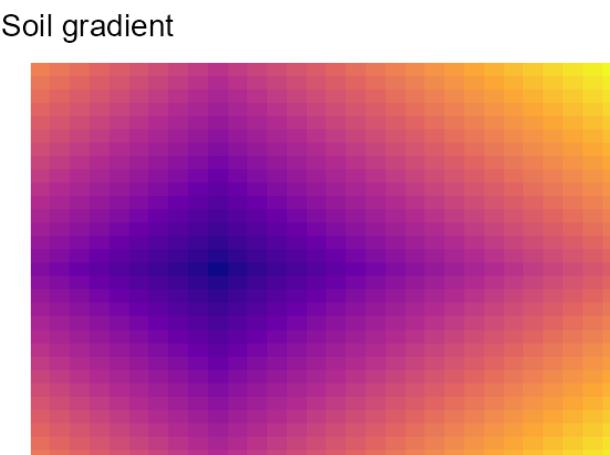
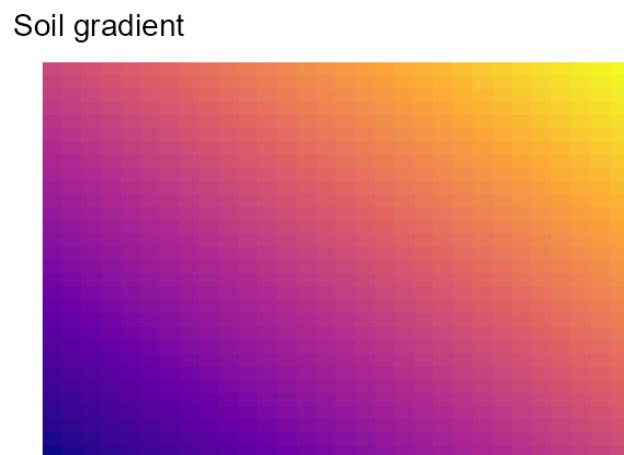
1	7	3	6
6	5	4	8
3	8	5	1
5	4	2	7
8	2	7	3
7	1	8	4
2	6	1	5
4	3	6	2

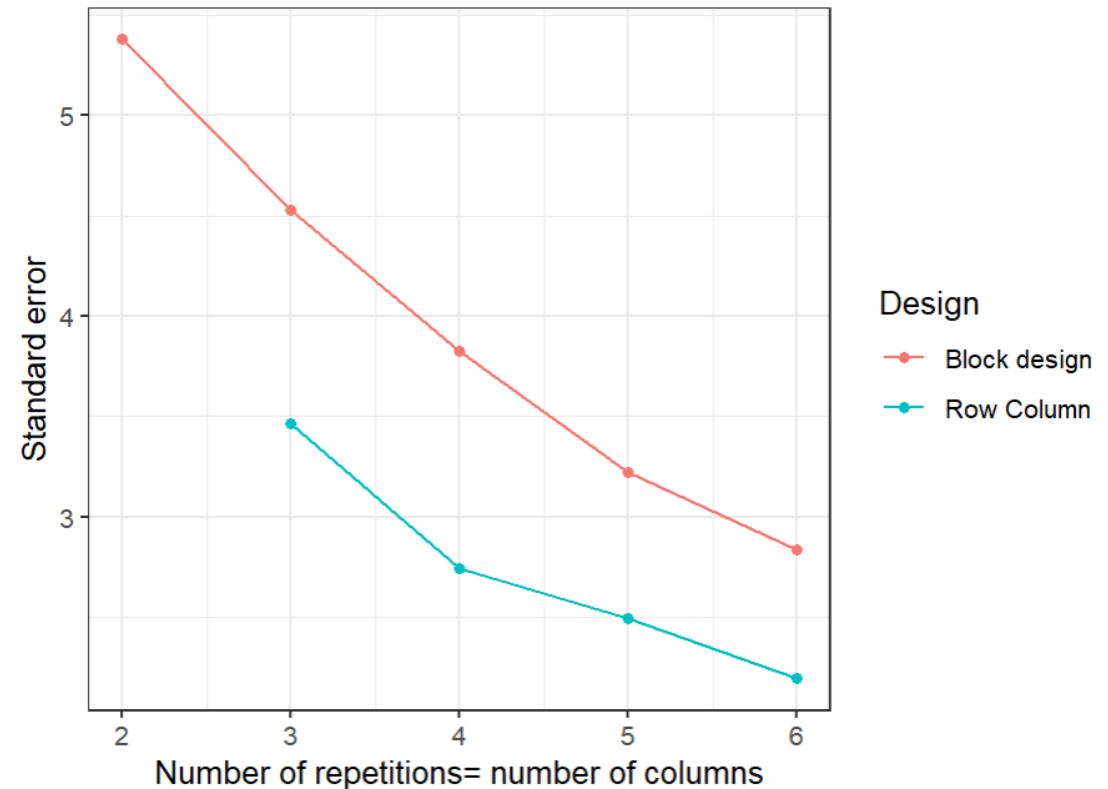


Extensions


- There are many designs that can be made by defining a blocking structure and then letting a computer distribute treatments equally among them (aiming for D-optimality)

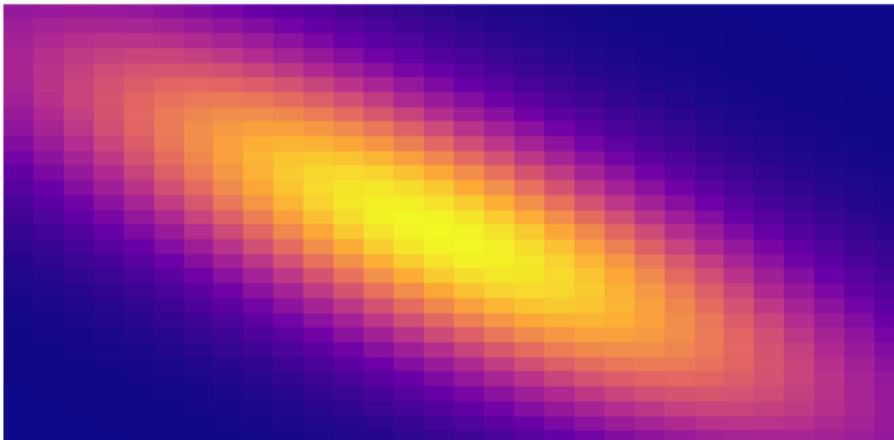
- Nested blocks makes incomplete block designs (alpha designs)



- Nested blocks and blocks in the other direction (t-latinized alpha designs)


- Blocks of bigger size (row-column group designs)

When to use row-column designs?

- Small to medium-sized designs which has
 - More than two columns
 - More than two rows
- Unsure about the direction of the soil gradient or if there are gradients in both row- and column directions


Unknown soil gradient
Simulations using wheat uniformity trials

When to consider more sophisticated models?

- When the trials are very big it is easy to discover more sophisticated patterns such as islands or ridges in the soil pattern
 - Spatial designs field trial designs can then be used

Soil gradient

Giant design

7	10	2	5	5	2	3	8	14	8	18	11	18	4	16	4	6	4	15	7	17	10	18	11	9	16	11	2	14	10	18	16	16	3	8	11	3	11	4	3
14	10	12	5	2	1	16	16	4	7	1	4	1	7	16	7	4	6	4	5	11	10	18	1	4	17	17	9	16	11	17	6	14	18	6	3	1	15	7	4
13	11	6	7	5	1	5	12	9	18	17	11	10	10	10	17	8	15	11	5	15	6	15	3	15	13	9	1	2	11	17	7	11	9	12	9	13	5	14	8
2	5	9	3	16	7	1	17	10	9	17	17	13	3	12	14	17	17	5	4	12	9	3	7	6	5	6	8	7	6	7	7	12	12	3	17	15	10	10	7
14	3	17	9	8	3	2	13	9	2	9	2	9	10	1	1	15	6	1	3	7	8	15	16	14	2	17	18	8	2	12	9	1	2	12	17	9	16	16	10
3	3	3	4	7	14	5	1	16	12	8	8	18	7	8	10	1	14	9	8	13	5	13	7	16	9	4	15	15	13	7	16	11	4	4	11	3	7	2	14
3	12	14	18	9	10	18	4	15	17	13	8	6	7	18	13	12	1	1	14	5	2	18	1	3	2	5	16	2	14	13	12	6	1	2	14	7	18	14	11
4	11	17	9	15	10	17	10	1	1	4	11	1	8	12	1	12	15	14	12	9	12	11	1	12	14	12	11	5	16	4	14	3	13	11	5	17	8	2	11
10	18	18	12	14	2	13	15	4	2	15	9	2	14	12	5	8	1	14	11	6	10	6	15	14	10	6	9	15	18	9	7	5	10	1	16	18	13	4	13
17	3	17	1	8	13	7	16	17	18	1	15	15	4	15	12	2	17	9	16	11	6	2	14	5	13	7	5	14	5	12	2	18	12	8	18	18	14	13	18
9	9	8	5	12	6	5	3	2	4	6	15	18	13	15	4	9	7	17	1	11	6	14	3	16	18	6	8	4	9	11	17	6	12	4	17	7	8	14	10
18	4	6	10	10	17	16	18	9	15	13	17	13	18	17	6	6	7	18	6	11	13	3	3	11	1	6	5	13	13	15	3	4	9	13	9	9	11	4	3
12	6	17	8	2	5	2	18	7	7	10	4	12	14	12	15	2	9	1	12	12	16	2	16	8	16	18	7	8	16	13	17	13	4	5	4	5	5	11	13
10	16	10	17	7	1	3	16	13	5	13	8	1	10	17	18	14	13	9	8	6	11	1	1	12	10	13	11	13	2	16	14	7	10	10	6	15	15	7	18
11	4	13	10	9	2	10	5	5	12	13	11	2	11	6	3	14	3	5	12	17	14	3	4	10	8	4	2	13	2	16	6	15	4	18	1	14	12	10	8
5	7	12	4	15	17	6	18	3	18	8	11	5	11	3	17	7	16	4	10	8	10	3	1	13	16	9	17	6	16	18	12	16	15	16	15	1	1	16	9
10	9	6	3	4	3	6	9	2	4	16	6	2	15	11	3	16	11	13	15	14	11	5	14	12	8	5	6	2	15	18	13	10	16	13	8	10	7	8	8
8	14	3	8	7	5	8	11	15	3	18	15	6	14	14	8	17	1	17	7	5	3	15	15	2	9	16	12	2	6	14	7	8	2	1	18	5	12	6	15

Thank you!